聚类算法总结 - Partitional Clustering

本文详细介绍了聚类算法的基本概念、特点及应用,包括K-means、K-means++、K-modes、K-prototypes与K-medoids算法的原理、优缺点、实现步骤等,旨在为读者提供全面的聚类算法知识框架。
摘要由CSDN通过智能技术生成
算法概括优缺点
k-means每次从类中求均值作为中心点
用到了EM的思想
目标是最小化sum of squared error
要求预设k值
易受噪音和离异点的影响
对不规则形状的类聚类效果不好
不保证全局最优
k-means++目标是找到k个合理的初始种子点给k-means。
1. 随机挑个随机点当“种子点”
2. 对于每个点,计算其和最近的“种子点”的距离D(x)并保存,然后把这些距离加起来得到Sum(D(x))。
3. 再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到其<=0,此时的点就是下一个“种子点”。
4. 重复2和3直到k个中心被选出来
5. 利用这k个初始的聚类中心来运行标准的k-means算法
k-modesK-Means算法的扩展
对于分类型数据,用mode求中心点
k-prototypes结合了k-means和k-modes
k-medoids每次从类中找一个具体的点来做中心点。目标是最小化absolute error。
PAM是一种典型的k-medoids实现。
对噪音和离异点不那么敏感
然而计算量大很多
CLARA先抽样,再用PAM对于大数据比PAM好点
主要是看sample的效果
CLARANS每次随机的抓一个medoid跟一般点,然后判断,这两者如果替换的话,能不能减小absolute-error融合了PAM和CLARA两者的优点,是第一个用于空间数据库的聚类算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值